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Abstract 26 

Spinal cord injury (SCI) is a life changing event that, as a result of paralysis, negatively 27 

influences habitual levels of physical activity and hence cardiometabolic health. 28 

Performing regular structured exercise therefore appears extremely important in persons 29 

with SCI. However, exercise options are mainly limited to the upper-body, which 30 

involves a smaller activated muscle mass compared to the mainly leg-based activities 31 

commonly performed by non-disabled individuals. Current exercise guidelines for SCI 32 

focus predominantly on relative short durations of moderate-intensity aerobic arm 33 

cranking exercise, yet contemporary evidence suggests this is not sufficient to induce 34 

meaningful improvements in risk factors for the prevention of cardiometabolic disease 35 

in this population. As such, these guidelines and their physiological basis, require 36 

reappraisal. In this special communication, we propose that high-intensity interval 37 

training (HIIT) may be a viable alternative exercise strategy, to promote vigorous-38 

intensity exercise and prevent cardiometabolic disease in persons with SCI. 39 

Supplementing the limited data from SCI cohorts with consistent findings from studies 40 

in non-disabled populations, we present strong evidence to suggest that HIIT is superior 41 

to moderate-intensity aerobic exercise for improving cardiorespiratory fitness, insulin 42 

sensitivity and vascular function. The potential application and safety of HIIT in this 43 

population is also discussed. We conclude that increasing exercise intensity could offer 44 

a simple, readily available, time-efficient solution to improve cardiometabolic health in 45 

persons with SCI. We call for high-quality randomised controlled trials to examine the 46 

efficacy and safety of HIIT in this population.  47 

 48 

Key words: Spinal cord injury, Cardiometabolic health, High-intensity interval 49 

training, Vigorous-intensity exercise, Cardiorespiratory fitness 50 
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Abbreviations:  51 

CVD- cardiovascular disease,  52 

FMD- flow-mediated dilation,  53 

HbA1c- glycated haemoglobin,  54 

HDL-C- high-density lipoprotein cholesterol 55 

HIIT- high-intensity interval training,  56 

HRmax- maximum heart rate,  57 

LDL-C- low-density lipoprotein cholesterol 58 

MICT- moderate-intensity continuous training,  59 

OGTT- oral glucose tolerance test,  60 

PAG-SCI- physical activity guidelines for people with a spinal cord injury,   61 

RPE- rating of perceived exertion,  62 

SCI- spinal cord injury,  63 

SIT- sprint interval training, 64 

T2DM- type-2 diabetes mellitus,  65 

V̇O2peak - maximal oxygen uptake.  66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 
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1 Introduction 76 

 77 

Spinal cord injury (SCI) creates a complex pathophysiology, characterised by paralysis, 78 

which has wide-ranging implications for multiple body systems. For persons with SCI, 79 

chronic cardiometabolic diseases occur at a heightened frequency and earlier in the 80 

lifespan compared to non-disabled individuals 1-3. Given that more than 2 million people 81 

currently live with SCI worldwide and the incidence of SCI is highest among young 82 

adults 4, it is clear that there is an increased and prolonged demand on medical and 83 

support resources for persons aging with paralysis. Despite the known, undisputed 84 

health benefits of physical activity in non-disabled individuals 5-7, research suggests 85 

patients with SCI perform little to no physical activity 8-11, and this is likely a key driver 86 

of the greater prevalence of cardiometabolic disease in this population 12, 13. Therefore, 87 

it is a priority to develop evidence-based, effective physical activity recommendations 88 

for the prevention of chronic disease in persons with SCI. 89 

 90 

The recently re-published Physical Activity Guidelines for Spinal Cord Injury (PAG-91 

SCI) recommends at least 20 minutes of moderate to vigorous-intensity aerobic exercise 92 

twice a week (40 min/wk) 14, while a recent position statement from Exercise and Sports 93 

Science Australia  recommends ≥150 min/wk of moderate-intensity or ≥60 min/wk of 94 

vigorous-intensity exercise 15. Both of these guidelines also include strength training ≥2 95 

day/wk 14, 15. Regardless of the large discrepancy between these guidelines in terms of 96 

the recommended volume of moderate-intensity exercise, they remain indifferent from 97 

the minimum amount of exercise which is promoted by reputable, international health 98 

authorities [Centers for Disease Control (CDC) and World Health Organisation (WHO)] 99 

in order to reduce the risk of developing cardiometabolic disease in the general 100 
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population. However, it is noteworthy that the exercise guidelines for non-disabled 101 

populations are based on lower-body or whole-body activity (e.g. walking, running, 102 

cycling), whereas exercise for persons with SCI is primarily restricted to the smaller 103 

upper-body skeletal muscles [e.g. arm-crank exercise or wheelchair propulsion]. As a 104 

result of the smaller active muscle mass and blunted haemodynamic responses with 105 

SCI, the absolute capacity for physical exercise is reduced 16-18. Therefore, at the same 106 

relative intensity, the absolute energy expenditure, cardiovascular strain, and whole-107 

body metabolic demand, will always be lower during moderate-intensity arm-crank 108 

exercise or wheelchair propulsion compared with moderate-intensity walking or 109 

cycling. The ability for skeletal muscle to adapt to the same stimulus will not be 110 

reduced; however, the smaller active muscle mass means that modest training-induced 111 

adaptations in the arm are less likely to impact biomarkers of cardiometabolic health. As 112 

such, to promote a lower volume of exercise in this population would seem 113 

physiologically counterintuitive, whilst promoting a similar volume of exercise would 114 

likely be less effective. In accordance with this, a recent randomised controlled trial 115 

demonstrated that performing PAG-SCI for 16 weeks was insufficient to promote 116 

clinically meaningful changes in both novel and traditional biomarkers of 117 

cardiovascular disease (CVD) 19. Moreover, a systematic review requested by the 118 

Consortium for Spinal Cord Medicine 20 concluded that the current evidence is 119 

insufficient to determine whether these volumes of exercise are associated with positive 120 

changes in carbohydrate and lipid metabolism (and associated disorders) amongst adults 121 

with SCI. Therefore, we contend that these guidelines, and their physiological 122 

justification, require reappraisal, and that there is need to develop more effective, 123 

alternative approaches.  124 

 125 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

6 
 

There are numerous psychosocial and environmental barriers to engage in physical 126 

activity for individuals that use wheelchairs 21-24.  Moreover, compromised venous 127 

return in persons with SCI blunts cardiac output 25, which can lead to an early onset of 128 

muscle fatigue 26, thus reducing ones capacity for prolonged exercise. Therefore, 129 

promoting a larger volume of moderate-intensity exercise might not be feasible in this 130 

population. Functional electronic stimulation 27-30 and body weight supported treadmill 131 

training 31, have received considerable research attention, but have numerous practical 132 

limitations (i.e. significant cost and specialist resources required), and may have limited 133 

application outside the laboratory. One potential alternative approach, which has 134 

received less attention, would be to recommend high-intensity interval training (HIIT) 135 

as a practical means of increasing vigorous-intensity exercise. The benefit of vigorous-136 

intensity physical activity is supported by a number of epidemiological studies, albeit in 137 

non-disabled individuals, demonstrating superior reductions in the risk of 138 

cardiovascular 32, 33 and all-cause mortality 34-36, in comparison to light-to-moderate 139 

intensity physical activity. Moreover, accumulating evidence, from studies applying 140 

HIIT in non-disabled populations, demonstrates that HIIT promotes superior peripheral 141 

37 and whole-body adaptations 38-40, compared with moderate-intensity continuous 142 

training (MICT). HIIT may therefore offer a simple, more effective alternative to 143 

current approaches for improving cardiometabolic health in persons with SCI. In the 144 

following sections we put forward the case for recommending HIIT in SCI, and 145 

subsequently consider its potential practical application and safety in this population.  146 

 147 

 148 

 149 
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2 High-intensity Interval Training to Facilitate Vigorous-intensity Exercise in 150 

Spinal Cord Injury 151 

 152 

HIIT encompasses exercise performed above the intensity which elicits the maximal 153 

lactate steady state. Any exercise above this threshold results in the progressive 154 

accumulation of intramuscular and systemic metabolites that are implicated in fatigue. 155 

As such, exercise intensities above this threshold (~80-85% V̇O2peak) cannot be 156 

maintained for a prolonged period of time. The exercise must therefore be performed in 157 

intervals interspersed with periods of low-intensity or resting recovery. The main 158 

justification for HIIT is that it allows a greater volume of vigorous-intensity exercise to 159 

be accrued in a single exercise session, and accumulating evidence suggests that this can 160 

be of great physiological and clinical benefit 38-40.  161 

 162 

A wide range of HIIT protocols have been utilised in the literature but with limited 163 

standardisation of the terminology used to classify different protocols. Furthermore, 164 

studies have prescribed exercise intensities as a percentage of different maximal 165 

physiological responses [e.g. maximum heart rate (HRmax 41), heart rate reserve 42, age-166 

predicted max heart rate 43 and peak oxygen uptake (V̇ O2peak 
44)] and, for these reasons, 167 

may not be directly comparable, particularly in individuals with low baseline fitness 45. 168 

Nevertheless, for the purposes of this review, we adopt the terminology proposed by 169 

Weston et al, 38, whereby HIIT describes protocols using intensities between 80-100% 170 

of HRmax, whereas protocols using ‘all-out’ efforts, or efforts ≥100% V̇O2peak, are 171 

referred to as sprint interval training (SIT) (Figure 1). There is good evidence that both 172 

HIIT and SIT provide equal or even superior physiological adaptations compared with 173 

MICT 46-50. However, as SIT protocols may be more difficult to adapt in order to 174 
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provide a practical intervention for persons with SCI, in this review we draw mainly on 175 

HIIT studies to support the argument for vigorous-intensity exercise. Example HIIT 176 

protocols tested in both the SCI and non-disabled literature are described in Table 1. 177 

 178 

[INSERT FIGURE 1 ABOUT HERE] 179 

 180 

[INSERT TABLE 1 ABOUT HERE] 181 

 182 

 183 

3 Moderate vs Vigorous-intensity Exercise for Cardiometabolic Health 184 

 185 

3.1 Cardiorespiratory Fitness and Skeletal Muscle Oxidative Capacity 186 

 187 

Poor cardiorespiratory fitness has been widely reported in individuals with SCI 52, 53. 188 

Although just ~90 min/wk 44, 54 of MICT is sufficient to promote modest improvements 189 

(~10%) in V̇O2peak, a substantially larger volume (180 min/wk) is necessary for greater 190 

improvements (~19%) 
55. Vigorous-intensity exercise offers superior benefits and is 191 

more time efficient. Of the two studies which have used time-matched training 192 

protocols in SCI (Table 2) there are negligible (12% vs. 10%) 42 and considerable (50% 193 

vs. 17%) 56 improvements in V̇ O2peak with vigorous-intensity compared to moderate-194 

intensity exercise, respectively.  The larger improvement in the De Groot et al, 56 study 195 

could be due to participants having acute (< 225 days) injuries or the greater volume of 196 

accumulated vigorous-intensity activity (additional 48 min/wk). More recently, 197 

unpublished data from Sæter 57, which adopted a more robust isocaloric study design, 198 

demonstrated a superior stimulus for V̇ O2peak and PPO with vigorous-intensity exercise 199 
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compared to MICT. Furthermore, a case-study demonstrated a 52% increase in V̇ O2peak 200 

in a 42 year old man with SCI following just 6 weeks of HIIT 58. 201 

 202 

Several studies have directly compared the effects of energy-matched HIIT and MICT 203 

on V̇O2peak in deconditioned (non-disabled) individuals with pre-existing 204 

cardiometabolic disease and these have clearly demonstrated that HIIT results in 205 

superior improvements. These studies were summarised in a recent meta-analysis 206 

which, using data from 10 studies and 273 participants, showed that the increase in 207 

V̇O2peak following HIIT was approximately twice (~3 ml/kg/min) that observed 208 

following MICT 38. This finding has been reproduced in various non-disabled 209 

populations including healthy young and middle-aged sedentary men 59, 60, overweight 210 

and obese men and women 61, and in individuals with type-2 diabetes mellitus (T2DM) 211 

62. A 3 ml/kg/min improvement in cardiorespiratory fitness is associated with a 15% and 212 

19% reduction in all-cause and CVD mortality, respectively, and is on par with a  7 cm 213 

reduction in waist circumference, a 5 mmHg reduction in systolic blood pressure, or a 1 214 

mmol/L drop in fasting plasma glucose 63, 64. Given that cardiorespiratory fitness 215 

consistently manifests as the strongest predictor of cardiometabolic disease risk and 216 

longevity in epidemiological studies 65-68, these findings are an important point of 217 

reference in the argument for applying HIIT, as a model to increase vigorous-intensity 218 

physical activity, in individuals with SCI.  219 

 220 

Although still a subject of debate 69-71, recent evidence supports, at least partially, the 221 

role of peripheral muscle characteristics, in particular absolute mitochondrial capacity 222 

(i.e. maximal mitochondrial oxygen utilization), in limiting V̇O2peak, and hence 223 

underpinning changes in V̇ O2peak with exercise training 72, 73. It is noteworthy then that a 224 
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recent study convincingly demonstrated that cycling based HIIT induced superior 225 

mitochondrial adaptations compared with MICT, in muscle taken from the lower limb 226 

37. Arm exercise training may not be sufficient to induce central hemodynamic 227 

adaptations 74, but can be expected to induce peripheral mitochondrial adaptations. 228 

Thus, if the superior effects observed with HIIT compared with moderate-intensity 229 

cycling and walking/running in non-disabled individuals are translatable to arm exercise 230 

training in persons with SCI, then HIIT may provide a more effective intervention for 231 

improving V̇O2peak in persons with SCI. Moreover, the superior changes in 232 

mitochondrial oxidative capacity with HIIT may have implications for other 233 

cardiometabolic risk factors such as insulin sensitivity and glycaemic control 75. 234 

 235 

[INSERT TABLE 2 ABOUT HERE] 236 

 237 

 238 

3.2 Insulin Action and Glycaemic Control 239 

 240 

Insulin resistance is a pre-requisite to T2DM. It is characterised by the failure of insulin 241 

to exert the normal cellular effects on various tissues, leading to the impairment of 242 

insulin mediated glucose disposal. Fasting hyperglycaemia can persist due to the 243 

insensitivity of the liver to the suppressive effects of insulin on gluconeogenesis and 244 

reduced glycogenolysis 76. Consequently fasting plasma glucose concentrations have 245 

been shown to correlate with basal rates of hepatic glucose output 77. Therefore, as 246 

fasting plasma glucose concentrations tend to be only mildly elevated in individuals 247 

with SCI 78, it is most likely that peripheral insulin resistance is the major driver behind 248 

impaired glycaemic control in this population. The lack of stimulation and disuse 249 

because of paralysis can have a profound impact on skeletal muscle below the level of 250 
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injury, including i) atrophy of lean mass 79-82, which diminishes the tissue available for 251 

glucose disposal (Figure 2a) 83, 84, and ii) accumulation of intramuscular fat 85, 86.  252 

 253 

[INSERT FIGURE 2 ABOUT HERE] 254 

 255 

Recent publications have demonstrated that moderate-intensity arm-crank ergometry 256 

improves insulin resistance, as determined by HOMA-IR 87, 88. Although this is 257 

promising, HOMA-IR reflects hepatic insulin sensitivity, whereas indices derived 258 

during postprandial oral glucose tolerance tests (OGTT), such as the ISImatsuda, represent 259 

predominantly peripheral insulin sensitivity 89, 90. Data from the HOMEX-SCI trial, 260 

including both fasting and provocative dynamic testing, would suggest arm-crank MICT 261 

(60 – 65% V̇ O2peak, 180 min/wk) in persons with chronic paraplegia improves hepatic 262 

but not whole-body insulin sensitivity 55. Therefore, moderate-intensity arm-crank 263 

exercise might not be sufficient to overcome insulin resistance in peripheral tissues. 264 

There is a paucity of research comparing both fasting and dynamic glucose and insulin 265 

responses to HIIT or MICT in the context of arm-crank exercise in the SCI population. 266 

Insulin sensitivity data from De Groot et al 56 is counter-intuitive, in that it demonstrates 267 

non-significant improvements in the moderate-intensity group and reduced insulin 268 

sensitivity in the high-intensity group. This may be explained by a natural regression to 269 

the mean effect (i.e. greater proportion of insulin resistant individuals in the low-270 

intensity group at baseline). These results should be viewed with caution due to the, (i) 271 

small sample size (n=3 per group) and, (ii) the marked age and sex differences between 272 

the two groups, which could impact exercise responses.  273 

 274 
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The impact of HIIT on insulin action and glycaemic control in non-disabled populations 275 

has recently been summarised by Jelleyman et al, 40 in a meta-analysis of 50 training 276 

studies. Their analyses demonstrated that HIIT was associated with improved insulin 277 

sensitivity (estimated via fasting or OGTT-derived indices) and reduced fasting glucose 278 

when compared to both baseline and/or changes in a no-exercise control group 40. The 279 

magnitude of change appeared to be greater in populations with insulin resistance (e.g. 280 

T2DM or metabolic syndrome) with reductions in glycated haemoglobin (HbA1c) also 281 

observed in this group 40. When compared with MICT there appeared to be greater 282 

improvements in markers of insulin sensitivity with HIIT (both fasting and dynamic 283 

combined), but no difference in the change in fasting glucose, insulin or HbA1c in 284 

isolation 40. These differences were apparent despite the fact that the methods varied 285 

considerably between studies. This included variations in the HIIT protocols utilised 286 

(e.g. SIT vs HIIT, cycling vs running), the techniques used to assess insulin sensitivity 287 

(e.g. fasting vs OGTT vs clamp) and the duration after the final training session in 288 

which the insulin sensitivity data was captured. Moreover, studies had been performed 289 

in a wide variety of populations. As such, there is sufficient evidence that in non-290 

disabled populations with insulin resistance HIIT is associated with superior changes in 291 

markers of insulin sensitivity compared to MICT 62, 91-95.   292 

 293 

It is also important to consider the acute effects of MICT and HIIT on glycaemic 294 

control, although this has received less research attention, especially in SCI individuals. 295 

Two studies have examined the acute effects if HIIT vs MICT on glycaemic control, 296 

using continuous glucose monitors to capture 24-hour glucose profiles, and have shown 297 

superior effects with HIIT in both obese men 96 and individuals with T2DM 97. These 298 

effects are underpinned by a plausible mechanism given that high-intensity exercise is 299 
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associated with greater muscle glycogen utilisation 98 and muscle glycogen 300 

concentrations are an important driver of acute changes in insulin sensitivity with 301 

exercise 99-101. Clearly, the acute effects of exercise, as well as comparisons of HIIT and 302 

MICT, on glycaemic control in SCI individuals, is an important area of future research.  303 

 304 

 305 

3.3 Vascular Function and Blood Pressure 306 

 307 

Arterial stiffness 102 and endothelial function 103, 104 are important predictors of future 308 

cardiovascular health. Individuals with SCI are characterised by severe deterioration of 309 

structure and function of vessels below the level of injury 105, but evidence also suggests 310 

increased stiffness and impaired endothelial function within central and regional upper 311 

body arteries in SCI relative to non-disabled controls 106. Recent evidence suggests that 312 

achieving the PAG-SCI for 16-weeks is insufficient to improve the health of both lower 313 

and upper-limb, as well as central blood vessels 19. 314 

 315 

A recent meta-analysis, including 182 participants from 7 studies, demonstrated that 316 

HIIT was superior to MICT for improving markers of endothelial function 39. Within 317 

the meta-analysis, studies that had utilised a work-matched HIIT protocol, consisting of 318 

4 x 4 min at 85-90% HRmax, appeared to show the most consistent benefit of HIIT over 319 

and above improvements observed with MICT 61, 91, 107, 108. A 1% increase in FMD 320 

(flow-mediated dilation) is associated with a 13% reduction in the risk of cardiovascular 321 

events 103. Therefore the 2.6% magnitude of difference in the change in FMD observed 322 

between HIIT and MICT in this meta-analysis would be expected to result in clinically 323 

meaningful risk reduction 39.  324 
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Individuals with lower-level spinal cord lesions experience similar hypertension issues 325 

as the general population 109, whereas individuals with higher-level lesions (≥ T6) often 326 

suffer from hypotension 110. A direct comparison of moderate and high-intensity 327 

exercise training on blood pressure is not available in SCI. However, in non-disabled 328 

individuals, evidence suggests that several months of HIIT or MICT are able to induce 329 

comparable changes in both systolic and diastolic blood pressure in a variety of 330 

populations 60, 61, 91, 111.  331 

 332 

 333 

3.4 Body Composition  334 

 335 

Individuals with SCI demonstrate a greater propensity to accumulate excess body fat 336 

compared to non-disabled populations 112, 113. Furthermore, due to the accelerated loss 337 

of lean mass, the distribution of adipose tissue in SCI also appears to be altered 114, 338 

which would be expected to exert detrimental metabolic effects 115-118. It is therefore 339 

important to consider the role physical activity plays in maintaining body composition 340 

and the potential contribution towards a sustained energy deficit to reduce adiposity. 341 

Yet, large additions to weekly total energy expenditure (TEE) through structured 342 

exercise (i.e. on top of baseline physical activity) are required to induce meaningful 343 

reductions in body fat 119. For example, Donnelly et al, 120 suggested that a meaningful 344 

body mass reduction requires an exercise energy expenditure in excess of 2000 kcal/wk. 345 

If we extrapolate from exercise data for inactive SCI participants in the HOMEX-SCI 346 

trial 55, achieving this would require approximately 448 min/wk of moderate-intensity 347 

arm-crank exercise. Therefore, it is perhaps not surprising that following PAG-SCI for 348 
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16 weeks does not induce significant reductions in total and visceral fat mass, although 349 

it may be sufficient to reduce the rate of increase in adiposity 19.  350 

 351 

There is good evidence from non-disabled studies that HIIT can be an effective 352 

intervention for promoting positive changes in body composition, including reductions 353 

in total body mass 59, 91, 121-123, total fat percentage 122-125, total abdominal fat mass 91, 122-354 

124 and waist circumference 91, 122, 126. However, perhaps as expected, studies that have 355 

compared energy-matched HIIT and MICT interventions (i.e. both interventions would 356 

increase TEE to a similar extent) over several months have demonstrated comparable 357 

changes in body composition 61, 91, 121. Interestingly, it also appears that HIIT protocols 358 

requiring lower exercise volumes (e.g. low-volume HIT or SIT) are associated with 359 

similar increases in total 24-hour energy expenditure to 30-50 min of MICT 127, 128 and 360 

can also induce meaningful reductions in total and abdominal fat 124, 129, which are 361 

comparable to 30-45 min of MICT in overweight/obese individuals 123. Increases in leg 362 

lean mass have also been observed with cycling based HIIT 122, 124, and this has the 363 

potential to also translate to the upper-body musculature in patients with SCI. While 364 

HIIT does not appear to induce a greater reduction in adiposity than MICT, the 365 

reviewed evidence would suggest it is equally as effective, but with a reduction in 366 

exercise time commitment. 367 

 368 

 369 

3.5 Fasting and Postprandial Dyslipidaemia 370 

 371 

A recent meta-analysis 130 highlighted that persons with SCI have a unique lipid profile, 372 

primarily characterised by depressed high-density lipoprotein cholesterol (HDL-C). 373 

Hooker & Wells 42 showed a trend for increased (21%) HDL-C and reduced (-15%) 374 
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low-density lipoprotein cholesterol (LDL-C) with vigorous but not moderate-intensity 375 

exercise over 8 weeks. Other trials specifically in persons with SCI demonstrated no 376 

impact of exercise-intensity on lipid profiles. Greater or similar improvements in HDL-377 

C with HIIT compared to MICT have been shown in populations with cardiometabolic 378 

disease 38 and obese young men 131, respectively. Currently the non-disabled literature is 379 

unclear as to whether HIIT offers superior adaptations than MICT for lipid profiles 39 380 

132. However, over 24 weeks O’Donovan et al, 133 demonstrated high-intensity exercise 381 

was more effective in improving lipid profiles than MICT of equal energy cost. It is 382 

possible interventions of longer durations are required to determine the true-impact of 383 

exercise intensity on lipid profiles.    384 

 385 

The two studies which have used time-matched training protocols in SCI demonstrated 386 

a decrease in fasting triglyceride concentrations (-19% 42 and -31% 56) pre-post with 387 

vigorous-intensity exercise, but no change with moderate-intensity exercise training. 388 

Elevated fasting triglyceride concentrations have long been associated with CVD 134, 135. 389 

Despite observing unremarkable concentrations of fasting triglycerides, participants 390 

with chronic paraplegia have shown exaggerated postprandial lipaemia 136, 137. This 391 

exaggerated postprandial lipaemia is an important stimulus for the development of 392 

atherosclerosis 138, and non-fasting triglyceride concentrations has revealed a stronger 393 

association with CVD than fasting 139. As a result of a more sedentary lifestyle, reduced 394 

lipoprotein lipase slows postprandial triglyceride extraction from the systemic 395 

circulation and the atrophy of leg lean mass limits the ability to metabolise postprandial 396 

triglycerides as a fuel source 140. To our knowledge, no studies have been conducted 397 

looking at the impact of upper-body exercise on postprandial lipaemia in persons with 398 

SCI. However, several studies have examined the effect of an acute bout of HIIT on the 399 
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postprandial triglyceride response to a high-fat mixed meal in able-bodied individuals. 400 

These were summarised in a systematic review which concluded that an acute bout of 401 

HIIT is similarly effective to MICT for reducing postprandial lipaemia 141. 402 

 403 

 404 

4 Cardiovascular Safety of HIIT 405 

 406 

Concerns have been raised over the safety of HIIT in populations at risk of 407 

cardiometabolic disease and this should be specifically considered with reference to 408 

SCI. Evidence from one recent non-disabled study, which included 5000 patients 409 

undergoing supervised cardiovascular rehabilitation over a 7-year period, suggested that 410 

the rate of adverse cardiovascular events was low with both HIIT and MICT, although 411 

the event rate was higher with HIIT 126. Specifically, the study reported an adverse 412 

cardiovascular event rate of 1 per ~23,000 exercise hours during HIIT (2 non-fatal 413 

cardiac arrests) compared with 1 per 129,000 exercise hours during MICT (1 fatal 414 

cardiac arrest) 126. However, various HIIT protocols have been used safely in patients 415 

with post infarction heart failure 142, 143, diastolic dysfunction 144, coronary artery disease 416 

145 and atrial fibrillation 146, while also improving clinical symptoms. A systematic 417 

review of laboratory/hospital based exercise training studies in persons with SCI found 418 

that adverse events were not common and those that occurred were not serious 147.  It 419 

should be noted that the individuals in this review and within the studies mentioned 420 

above were subject to extensive screening, and the cardiovascular safety of HIIT in this 421 

population therefore requires further scientific appraisal. However, when appropriate 422 

pre-participation screening is adopted the risks of adverse events are relatively low and 423 

as previously suggested are ‘likely comparable with the variant risks observed in the 424 

general population’ 148. SCI-specific special considerations for exercise, including the 425 
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management of autonomic dysreflexia, have been thoroughly addressed elsewhere 15, 426 

149. It is noteworthy that patients with SCI are usually well-educated regarding the 427 

symptoms and management of autonomic dysreflexia and there is no reason to speculate 428 

that the occurrence of this will be increased with HIIT. As with any exercise 429 

prescription, it would be recommended that individuals consult their clinician prior to 430 

engaging in such exercise training programmes. 431 

 432 

 433 

5 Considerations for the application of HIIT to SCI populations 434 

 435 

Individuals with SCI ≥ T6 exhibit a blunted cardiovascular response due to an absence 436 

of cardiac sympathetic innervation 150 and a reduced catecholamine response during 437 

exercise 151. As a result of autonomic dysregulation, HRpeak can be as low as 120 b/min. 438 

Consequently in these individuals it would be difficult to prescribe an appropriate 439 

exercise intensity using heart rate data. Evidence suggests that ratings of perceived 440 

exertion (RPE) 152 and a talk test 153 can be effectively used to control exercise intensity 441 

in persons with paraplegia. Consequently we advise an RPE ≥16 and ‘speaking is not 442 

comfortable’ as appropriate markers of ‘vigorous-intensity’ when performing upper-443 

body exercise.  444 

 445 

The advantage of HIIT is that it enables deconditioned individuals to do a substantial 446 

amount of work at a relatively high-intensity by incorporating rest periods, which 447 

reduce local muscular fatigue. Fatigue following an acute 20 minute bout of HIIT in 448 

patients with chronic fatigue syndrome was not clinically different to moderate-intensity 449 

continuous exercise of a comparable workload 154.  Sensory impairment below the level 450 
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of injury can increase the risk of pressure sores when performing new activities for 451 

prolonged periods in the same position. Consequently as HIIT can be more time 452 

efficient and incorporates rest periods (ideal for performing regular pressure release) 453 

this could mitigate this risk and prevent skin breakdown.  454 

 455 

Due to a reduced sweating capacity and inability to dilate superficial vasculature 155, 456 

persons with higher-level injuries have an impaired heat loss during exercise 156. While 457 

workload is increased with HIIT, possibly resulting in greater heat production, the total 458 

exercise time is less than MICT with recovery periods interspersed throughout. 459 

Therefore we have no reason to believe that HIIT would impact core body temperature 460 

more than MICT. Still precautions should be taken when persons with SCI exercise in 461 

hot environments, as they have impaired thermoregulatory function 157. Furthermore, to 462 

overcome blood pooling in lower extremities, associated with impaired venous return, 463 

an adequate cool down should be performed to prevent post-exercise hypotension. 464 

Shoulder overuse injuries and musculoskeletal pain are also common in persons with 465 

SCI 158, 159. While the higher workloads necessary to achieve vigorous-intensity might 466 

further contribute to these conditions, exercise has been proposed as a feasible, 467 

conservative, therapeutic treatment for shoulder pain in persons with SCI 160. 468 

 469 

Discussions regarding behaviour change and/or maintenance are outside the scope of 470 

this review. However, preliminary evidence would suggest that individuals with pre-471 

diabetic conditions can adhere to HIIT over the short-term (4 weeks) and do so at a 472 

greater level than MICT 123, 161. Questions have been raised regarding the adherence to 473 

HIIT over the long-term 162, 163 but we encourage researchers and practitioners to 474 

develop and evaluate strategies to incorporate HIIT into the everyday lives of persons 475 
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with SCI. We believe this is possible considering the evidence that non-disabled 476 

participants enjoyed HIIT more and were equally as confident to engage in HIIT as they 477 

were MICT 164. Reassuringly, unpublished data has also demonstrated persons with SCI 478 

experienced greater enjoyment with HIIT and SIT protocols compared to MICT 165. 479 

However, medical over protection may limit the prescription of vigorous-intensity 480 

exercise rehabilitation in this population. To help overcome this, the safety and efficacy 481 

of HIIT, particularly for persons with acute (<1 year) and higher level (≥T6) SCI would 482 

need to be demonstrated by well-controlled longitudinal training studies. This is 483 

imperative when vigorous-intensity exercise has the potential to offer significantly 484 

greater improvements in certain cardiometabolic outcomes than MICT in a population 485 

at increased risk of chronic disease.     486 

 487 

 488 

6 Conclusions 489 

 490 

This special communication presents a case for the utility of HIIT as a strategy to 491 

promote vigorous-intensity physical activity and reduce cardiometabolic disease in 492 

persons with SCI. Data from SCI cohort studies, albeit collected using suboptimal 493 

research designs, seem to agree with consistent findings from studies in the general 494 

population that vigorous-intensity is superior to moderate-intensity exercise in 495 

improving a variety of cardiometabolic health outcomes. Importantly, these findings can 496 

be explained and supported by plausible physiological mechanisms. High–intensity 497 

virtual reality arm-exercise is already being investigated in persons with SCI 166 and the 498 

National Centre on Health, Physical Activity & Disability (NCHPAD) promote a 499 

selection of adapted vigorous-intensity exercise options (e.g. wheelchair burpees). 500 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

21 
 

Increasing exercise-intensity could offer a simple, readily available, time-efficient 501 

solution to improve cardiometabolic health in persons with SCI. However, until stronger 502 

evidence has been collated concerning the safety and efficacy of HIIT in this population 503 

this is merely a call to action for researchers in the field and not necessarily an exercise 504 

guideline to be prescribed by clinicians.505 
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Table 1 High-intensity interval training (HIIT) protocols used in non-disabled and SCI 

research studies. 

 

Table 2: Description of exercise training studies that have compared the impact of 

exercise intensity on cardiometabolic health markers in persons with SCI. 

 

 

Figure 1: Schematic of sprint-interval training (SIT), high-intensity interval training 

(HIIT) and moderate-intensity continuous training (MICT) protocols (Adapted from 

Gibala et al, 51 with permission). 

 

Figure 2: Whole body Dual-energy X-ray absorptiometry (DEXA) scan of a female 

with neurological complete T7 injury sustained 6 years previously (a) and non-disabled 

female for comparative purposes (b). This figure visually highlights the drastic atrophy 

of lean mass and accumulation of intramuscular fat in the lower extremities of 

individuals with SCI.  
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Table 1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 Legend: HRmax maximum heart rate, N-D non-disabled, RPE ratings of perceived exertion, SCI spinal cord injury, Wmax peak power output (Watts), achieved 
during an incremental test to fatigue 
 
Suggested frequency for training interventions is 3 sessions/week. Low-intensity warm-up and extended cool-down are not included in the table, but should be incorporated 
into any applied protocol to optimise circulation and prevent post-exercise hypotension (Evans et al, 14). We have suggested appropriate RPE values so that these protocols 
can be followed in patients with blunted cardiovascular responses to exercise (spinal cord injury lesions ≥T6). There is scope for variation in the above HIIT protocols, as the 
frequency, intensity and the duration of the high-intensity intervals, as well as the characteristics and duration of the recovery periods, may all be manipulated to change the 
nature of the exercise stimulus and thus potentially the physiological adaptations associated with training 168, 169 
 
 
†   Unpublished data 
 
 
 
 
 
 
 

Authors 
Exercise Intervals  Recovery Intervals 

Total Session Time 
Number Intensity Duration  Intensity Duration 

        

Little et al, 167 N-D 
Harnish et al, 58 SCI 

10 
90-110% Wmax 
≥85% HRmax 

RPE ≥19 
1-min  20-25% Wmax 1-2 min ~25 min 

        

Tjønna et al, 91 N-D 
Sæter 57 † SCI 

4 
~85% Wmax 

85-95% HRmax 
RPE ≥17 

2.5-4 min  20-25% Wmax 3-5 min ~30 min 

        

        

MacInnis et al, 37 N-D 
Harnish et al, 58 SCI 

3 
~70% Wmax 

80-85% HRmax 
RPE ≥ 16 

4-5 min  20-25% Wmax 3-5 min 
 

~30 min 
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Table 2  

Authors Study Design 
Participant 

Characteristics 
Intervention 

Outcome Measures 

Change No Change 

Hooker & 
Wells42 * 

Pre-post 
parallel group 
WERG INT 

6 (3F), 5 PARA, 1 
TETRA, 
TSI; 4 mo - 19 yr 
Age; 26 - 36 yr Frequency: 3 x wk 

Time: 20 min 
continuous  
Duration: 8 wks 

Moderate-
intensity (50 - 

60% HRR) 

↑ V̇O2 peak (10%), ↑ PPO (24%) 
 

TC, TAG, LDL-C, 
HDL-C 

5 (2F), 3 PARA, 2 
TETRA, 
TSI; 2 - 19 yr 
Age; 23 – 36 yr 

High-intensity (70 
- 80% HRR) 

↑ V̇O2 peak (12%), ↑ PPO (13%) 
↓ TAG (96 ± 28 to 78 ± 18 mg/dL; P ≤ 0.10), 

↑ HDL-C (39 ± 11 to 47 ± 8 mg/dL; P ≤ 0.10),   
↓ LDL-C (137 ± 26 to 116 ± 5 mg/dL; P ≤ 0.10) 

TC 
 

De groot et 
al, 56 * 

Pre-post 
parallel group 

ACE INT 

3 (2F), All PARA 
TSI; 61 - 225 days  
Age; 50 - 54 yr 

Frequency: 3 x wk, 
Time: 60 min (3 & 2 
minute work and rest 
intervals, respectively. 
Accumulated activity 

= 36 minutes)  
Duration: 8 wks 

Moderate-
intensity (40 - 

50% HRR) 

↑ V̇O2 peak (17%), ↑ PPO (24%) 
 

TC, HDL-C, LDL-C, TAG. 
Non-significant improvement 

in IS (56%, measured via 
HOMA-CIGMA) 

3, 2 PARA, 1 
TETRA  
TSI; 43 - 175 days 
Age; 20 - 38 yrs 

High-intensity (70 
- 80 % HRR) 

↑ V̇O2 peak (50%), ↑ PPO (59%) 
↓TAG (-31%), ↓ IS (-33%, measured via HOMA-

CIGMA)  

TC, HDL-C, LDL-C 

Sæter 57 † 
Pre-post 

parallel group 
ACE INT 

5, All PARA 
TSI; 15 ± 11 yrs 
Age; 43 ± 14 yrs 

Frequency: 3 x wk 
Time: ~ 49 min (373 kcal) 

Duration: 8 wks 
Moderate-intensity: 70% peak HR 

 

V̇O2 peak, PPO, TC,  
HDL-C, LDL-C, TAG, 

glucose 

5, All PARA (1F) 
TSI; 15 ± 14 yrs 
Age; 46 ± 6 yrs 

Frequency: 3 x wk 
Time: 28 min (including 12 min active 

recovery) 
Duration: 8 wks 

High-intensity: 85 – 95% peak HR (4 x 4 
min intervals)  

↑ V̇O2 peak (9%, trend for an interaction effect 
between groups, P = 0.051), ↑ PPO (28%) 

TC,  
HDL-C, LDL-C, TAG, 

glucose 
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Table 1 Legend: ACE arm crank exercise, HDL-C high density lipoprotein cholesterol, HR heart rate, HRR heart rate reserve, INT intervention, IS insulin sensitivity, LDL-C 
low-density lipoprotein cholesterol, PARA paraplegic, PPO peak power output, TAG triglyceride, TC total cholesterol, TETRA tetraplegic, TSI time since injury, V̇O2 peak 
peak oxygen uptake, WC waist circumference, WERG wheelchair ergometry. 
 
*    Note, authors refer to 70-80% HRR between studies as moderate 42 and high-intensity 56 , respectively. The terminology to describe exercise-intensity has been reclassified 
into moderate (40-60% HRR) and high-intensity (70-80% HRR). 
 
†   Unpublished data 
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Warm Up (10 minutes) 

 
Cardiovascular exercises (moving around independently in multi-directions) 

• Marching with arm swings 
• Walking backwards with knees straight 
• Walking with leg curls 
• Jogging 
• Skipping 
• Walking in slow motion (stepping with a one second pause before heel strike) 
• Walking with longer strides 
• Walking on heels 
• Walking on toes 

 
Upper body stretches 

• Cervical rotation and side flexion (2 reps x 10 second hold bilaterally) 
• Shoulder raises (2 reps x 5 second hold) 
• Shoulder rolls (10 reps bilaterally) 

 
Trunk stretches (with aqua noodle) 

• Trunk rotation with arms abducted and externally rotated holding the aqua noodle (5 reps bilaterally) 
• Arm raises reaching both arms overhead holding the noodle (5 reps bilaterally) 
• Side bends pressing the aqua noodle into the water (5 reps x 5 second hold bilaterally) 

 
Gait re-education (20 minutes) 

 
Water Depth 

 
1.1 meters 

 

 

1.8 meters 
 
 
Strength exercises (10 minutes) 
(2 minutes per exercise; 3 exercises selected per class with as many repetitions carried out as possible within the 
time) 

Circuits 
• Sit to stand (using pool chair) 
• Step ups (progression: raising arms up and down holding the aqua noodle) 
• Side step ups 
• Trunk rotation (performed standing back to back with a partner, passing ball x 10 reps bilaterally) 
• Squats with aqua noodle 
• Lunges 

 
Group 

• Single leg stand (light finger hold at baseline progressed to 10 seconds with no hand support by session 12) 
• Calf raises (10 reps at baseline progressed to 2 sets x 15 reps by session 12) 
• Single leg calf raises (5 reps at baseline progressed to 15 reps by session 12) 
• Push downs with aqua noodle (15 reps at baseline progressed to 30 reps by session 12) 

 
Cool Down (5 minutes) 
(Performed standing by pool wall at water depth level T8 (8th  thoracic vertebrae), 30 second hold x 3 reps) 

 
• Quadriceps, hamstring and calf stretches performed using aqua noodle 

Step 1 Step 4 

Step 2 Step 3 

 
Activity 

• Continuous walking 
• Stepping up and down off the 

steps 
 

Progression 
• Increase walking speed 
• Stepping over steps 
• Change of direction (turning) 
• Walking with fins (as tolerated) 


